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ARTICLE INFO ABSTRACT

Keywords: The investigation of conventional complete blood-count (CBC) data for classifying the SARS-CoV-2 infection
COVID-19 status became a topic of interest, particularly as a complementary laboratory tool in developing and third-world
SARS-CoV-2

countries that financially struggled to test their population. Although hematological parameters in COVID-19-
affected individuals from Asian and USA populations are available, there are no descriptions of comparative
analyses of CBC findings between COVID-19 positive and negative cases from Latin American countries. In this
sense, machine learning techniques have been employed to examine CBC data and aid in screening patients
suspected of SARS-CoV-2 infection. In this work, we used machine learning to compare CBC data between two
highly genetically distinguished Latin American countries: Brazil and Ecuador. We notice a clear distribution
pattern of positive and negative cases between the two countries. Interestingly, almost all red blood cell count
parameters were divergent. For males, neutrophils and lymphocytes are distinct between Brazil and Ecuador,
while eosinophils are distinguished for females. Finally, neutrophils, lymphocytes, and monocytes displayed a
particular distribution for both genders. Therefore, our findings demonstrate that the same set of CBC features
relevant to one population is unlikely to apply to another. This is the first study to compare CBC data from two
genetically distinct Latin American countries.

Machine learning
Hematological data
Brazil

Ecuador

1. Introduction such as Alpha (initially identified in the UK), Beta (South Africa),
Gamma (Brazil), and the Delta (India) variants (Faria et al., 2021;
Nonaka et al., 2021; Singh et al., 2021; Tao et al., 2021). In addition to

the high genetic variability of the virus, the extensively diverse genetic

Since the end of 2019, the Coronavirus disease (COVID-19) has
impacted nearly all branches of society, especially the global economy

and health services (Nicola et al., 2020; Pak et al., 2020). This reality
was particularly noticeable in developing and third-world countries,
which struggled with financial resources and administration problems,
leading to inefficient population testing and poorly devised strategies to
manage the crisis (Hotez et al., 2020).

As expected and heavily warned, SARS-CoV-2 mutated, and now a
myriad of variants, including rapidly expanding virus lineages since
December 2020, designated variants of concern (VOCs) were identified
in distinct populations (Tao et al., 2021). In this sense, some VOCs
became more threatening than others due to their higher infectability,
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background of the human host also contributes to the complexity of
COVID-19 clinical outcomes. Thus, comparing clinical and laboratory
data between affected and non-affected individuals from extensive
admixture-Latin American populations is essential to better understand
the effect of the interaction between host genetic ancestry and exposure
to specific SARS-CoV-2 VOCs on the susceptibility to infection and dis-
ease severity (Fricke-Galindo and Falfan-Valencia, 2021; Harvey et al.,
2021). In particular, Brazilian and Ecuadorian populations have het-
erogeneous genetic constitutions with a predominant three-hybrid
composition (European, African, and Native American). Nonetheless,
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the contribution of each ancestry component is markedly different be-
tween these countries (de Moura et al., 2015; Santangelo et al., 2017; de
Souza et al., 2019; Zambrano et al., 2019).

Unfortunately, the current scenario is that numerous countries are
still struggling with high SARS-CoV-2-associated infection and mortality
rates, mainly because of the new VOCs that can infect fully vaccinated
individuals (Gupta, 2021). Thus, more efforts should be made to prop-
erly recognize the differences between the populations to understand
the distinct hematological and/or immunological reactions to SARS-
CoV-2 infection. The hematological manifestations of COVID-19,
mainly due to the exacerbated release of inflammatory mediators
("cytokine storm"), include blood cell count alterations, particularly
lymphopenia, neutrophilia, and thrombocytopenia exhibiting potential
for early diagnosis of the disease and prognostic significance (Agbuduwe
and Basu, 2020; Li et al., 2020; Terpos et al., 2020; Zhu et al., 2020).
Interestingly, despite several studies describing the profile of hemato-
logical parameters in COVID-19-affected cohorts predominantly from
Asian and USA populations (Elshazli et al., 2020; Koc et al., 2021;
Stegeman et al., 2020), no works compared these laboratory data from
COVID-19 patients between countries in Latin America. Given that
population-specific genetic ancestry influences on hematopoiesis and in
turn on Complete Blood Count (CBC)-associated traits (Chen et al., 2020;
Vuckovic et al., 2020), as well as the high genetic variability observed in
Latin America (Adhikari et al., 2016), it is imperative to learn the dif-
ferences in hematological profiles to SARS-CoV-2 infection between
individuals from distinct Latin countries. Being this a challenging task,
employing advanced computational techniques that could automatically
detect patterns buried within the large amount of available data ob-
tained from clinical data is gradually gaining more ground in the Med-
ical field.

In this sense, Machine Learning (ML) techniques have been
employed to investigate CBC data and aid in the screening of patients
suspected of SARS-CoV-2 infection (Alimadadi et al., 2020; Avila et al.,
2020; Brinati et al., 2020; Gong et al., 2020; Imran et al., 2020; Wu et al.,
2020; Yan et al., 2020; Yao et al., 2020). Briefly ML algorithms perform
computational tasks by relying on learning patterns from data samples
to automate inferences. In classification tasks, the aim is to induce a
model that can distinguish pathological from non-pathological (healthy)
samples from the population. Some variables used in the induction of the
classification model are more relevant than others and may reveal
important characteristics about the set of samples analyzed. These var-
iables can change from one cohort to another, revealing relevant char-
acteristics and comparing populations.

In this work, we used ML to compare CBC data between two highly
genetically distinct Latin American countries: Brazil and Ecuador. We
found striking differences in CBC profiles from the two countries,
especially in red-blood-cell counts. Moreover, white-blood-cell counts
displayed distinguished patterns, specific for males and females, positive
and negative cases. Therefore, our data showed that features relevant to
one population are unlikely to apply to another, which agrees with the
genetic ancestry background of both countries.

2. Material and methods
2.1. Datasets

Datasets were obtained from an open repository, the COVID-19 Data
Sharing/BR initiative (FAPESP, 2020; Mello et al., 2020), of COVID-19-
related cases in Brazil, which is comprised by nearly 177,000 clinical
cases. Datasets originate from the Albert Einstein Hospital.! The data
from these datasets were collected from February 26th, 2020, to June
30th, 2020, and the control data (individuals without COVID-19) was
collected from November 1st, 2019, to June 30th, 2020. Patient data is

1
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anonymized, demographic data (including sex, year of birth, and resi-
dence zip code) is also described. Other clinical results are also avail-
able, such as pulmonary function tests, urinalysis parameters, and
pulmonary imaging results. COVID-19 detection by RT-PCR tests is
described for all patients, and serology diagnosis (IgG and IgM antibody
detection) is provided for some samples. Information is not complete for
all patients, with a distinct mixture of results offered individually.

Twenty distinct CBC test parameters were obtained from the dataset,
including hematocrit (%), hemoglobin (g/dl), platelets (><103 ul), mean
platelet volume (MPV) (f1), red blood cells (RBCs) (x 106 ul), white blood
cells or leukocytes (x10° ul), lymphocytes (x10° ul), basophils (x10°
ul), eosinophils (x10° ul), monocytes (x10° ul), neutrophils (x10° ub),
mean corpuscular volume (MCV) (fl), mean corpuscular hemoglobin
(MCH) (pg), mean corpuscular hemoglobin concentration (MCHC) (g/
dl), red blood cell distribution width (RDW) (%), % Basophils, % Eo-
sinophils, % Lymphocytes % Monocytes, and % Neutrophils. Since
elevated neutrophil/lymphocyte ratio (NLR) has been described as a
hematologic biomarker in COVID-19 positive patients (Alkhatip et al.,
2021), it was calculated from the result of absolute counts of these
respective types of leukocytes from each patient of the datasets. Overall
baseline characteristics can be found on the complete dataset, available
at the FAPESP COVID-19 Data Sharing/BR.” Patients with incomplete
(missing data) or lacking the above parameters were not included. A
unique CBC test was used for patients with multiple test results, with the
selection based on the blood test date. In this sense, same-day, or the day
closest to the test, results to the PCR-test collection date were utilized as
a reference.

For Ecuador, the CBC data was obtained between March 3rd, 2021,
to August 9th, 2021. Exams were carried out by Segurilab® and Previne
Salub® laboratories. The data set is comprised by nearly 400 clinical
cases and each patient were agree to participate in the study by sharing
your PCR test results along with a CBC. The features in the CBC data
from Ecuador are the same as the Brazilian one. We used three datasets
in our experiments (Table 1): Br-vl contains data from 3108 patients
from Brazil; Ecu-v1 contains data from 251 patients from Ecuador, and
Br-v2 contains a reduced version of the Br-vl dataset considering the
same number of samples as in Ecu-v1. By constructing the Br-v2 dataset,
we ensured that the age and sex of the patients were compatible with the
data from Ecu-v1 (Table 2), thus avoiding any bias in the subsequent
analyses. All datasets are available at https://github.
com/sbcblab/CBCBrazilEcuador.

The number of negative samples for all datasets exceeds the positive
samples. This is expected from disease data since the number of in-
fections will be small compared to the entire population. Class imbal-
ance is common in many real-world applications and affects the quality
and reliability of ML approaches (Johnson and Khoshgoftaar, 2019;
Leevy et al., 2018; Lopez et al., 2013). We use Shannon’s entropy to
measure the imbalance of each dataset (Table 5). On a dataset of n in-
stances, k classes of size ¢; we compute the entropy using Eq. (1), and
then the balance is measured of each dataset using Eq. (2) getting O for
an unbalanced dataset and 1 for a balanced dataset.

Finally, the datasets do not provide viral sequencing data to inves-
tigate which SARS-CoV-2 variant was identified in positive cases (i.e.,
specific VOC/viral lineage of each patient, or dominant transmission
lineage in a subset of samples, were not available).

k

¢ G
H= — oo 1
Zl —log-- eh)
H =Y Glogs
Bal - = =1ln n 2
alance logk logk @
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Table 1
Data summary of the datasets.
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Dataset Samples PCR Positive PCR Negative Shannon entropy
Selected Male Female Total Male Female Total Male Female Total
Br-vl 4473 744 621 1365 1440 1668 3108 0.93 0.84 0.89
Ecu-vl 375 75 49 124 160 91 251 0.90 0.93 0.92
Br-v2 375 75 49 124 160 91 251 0.90 0.93 0.92
Table 2
Dataset preprocessing, displaying the mean age of males and females individuals in positive and negative samples.
Dataset PCR Positive PCR Negative
Male Female Total Male Female Total
Br-vl 53.27+15.91 52.07+17.28 52.72416.55 46.60+19.16 45.44+17.65 45.98+18.37
Ecu-vl 38.40+14.20 35.00+14.30 37.10+14.30 37.10+£11.30 36.20+13.50 36.80+12.10
Br-v2 38.40+14.25 35.02+14.29 37.06+14.31 37.09+11.26 36.16+13.48 36.76+12.09

2.2. Feature selection and feature extraction

Feature selection (FS) is part of the tasks involving dimensionality
reduction, one of the fundamental data pre-processing steps for building
ML models (Ang et al., 2015). ML models assume that all features are
relevant for the task at hand. However, the computational cost of
inducing the model increases with the number of features. Irrelevant
attributes can also impair the predictive ability of the model, as there is
evidence that the same learning algorithm achieves better performance
by inducing on a subset of the same data where some of the original
features are discarded (Cilia et al., 2019; Dash and Liu, 1997; Utans
et al., 1995). In most problems, the relevant attributes are unknown, and
FS can discover knowledge from the collected data. In different tasks,
the collection, maintenance, and provision of input data present an
economic cost to be minimized and more stringent performance re-
quirements. In CBC data, FS is performed as a selection of the most
representative variables in the dataset, taking into account the values of
each feature in the different samples. With this, it can assist in biological
pattern discovery, class prediction, and recognition of data that are not
directly associated or known to the problem but may play a key role
(Ang et al., 2015; Mirza et al., 2019).

FS methods are grouped into four types (Ang et al., 2016; Lazar et al.,
2012): (i) Filter, (ii) Wrapper, (iii) Embedded and (iv) Hybrid. While the
evaluation of the filter-based methods is independent of any classifier,
the wrapper and embedded methods use the accuracy of the classifier
itself. However, they also require strategies to search the feature space to
perform the selection (Lazar et al., 2012). In Wrapper type methods, the
selection is done using some optimization algorithm (particularly Met-
aheuristics) and then wrapping a classifier around the selected features,
using their accuracy as an evaluation criterion. The set of the most
discriminative features is found by minimizing the classification error,
which often generates better results than filters. In this paper, we use a
wrapper FS algorithm based on Recursive Feature Elimination (RFE) and
Support Vector Machines (SVM-RFE) (Guyon et al., 2002), in which SVM
is the classifier employed to assess the quality of inputs subsets.

The main group of algorithms for dimensionality reduction is Feature
Extraction (FE), a set of methods that transforms the original feature
space into different spaces with a new set of axis by combining their
features and finding the ones that preserve the original information
(Varshavsky et al., 2006). In our experiments, we used two features
extractors to compare the population of Brazil and Ecuador: Principal
Component Analysis (PCA) (Jolliffe and Cadima, 2016) and t-Distrib-
uted Stochastic Neighbor Embedding (t-SNE) (van der Maaten and
Hinton, 2008). FS techniques are used to filter irrelevant or redundant
features from the datasets. FE methods are used for dimensionality
reduction, in which an initial set of raw data is reduced into more
manageable groups. The main difference between these approaches is

that FS keeps a subset of the original features, while FE creates new ones.

2.3. Statistical analysis

The Mann-Whitney U (MWU) statistical test (3) was used to obtain
the statistical significance between COVID-19 positive and negative
groups for each component of the CBC tests (Table 3). The MWU test is a
non-parametric statistical technique employed to analyze differences
between the medians of two distinct datasets (Milenovic, 2011). A p-
value < 0.05 was considered statistically significant.

ni(n; +1)

Uy =nn+ )

—R 3

where n; and n, are the number of the score in the 1st and 2nd condition,
respectively. R; is the sum of the ranks in the 1st condiction.

3. Results
3.1. CBC differences between Brazilian and Ecuadorian populations

Intra- and inter-populational variations were spotted in our PCA and
t-SNE analyzes, with a clear division observed in the PCA between
positive and negative cases of both genders between Brazilian and
Ecuadorian populations.

Positive and negative cases in male and female individuals, when
looked at individually, were distinctively distributed in the Ecuadorian
population. In contrast, the Brazilian cases were more mixed (Fig. 1A-B).
However, when comparing male and female positive and negative cases
together from both populations, an explicit division was observed
(Fig. 1C). The same tendency is noticed in the t-SNE (Fig. 2C). The re-
sults indicate that samples from male and female individuals might show
a mixed distribution when observed individually in the context of their
own countries. However, when analyzed together, Brazilian and Ecua-
dorian positive and negative cases have a distinct distribution, sug-
gesting particularities in CBC patterns.

Fig. 3 and Fig. 4 display the CBC data of positive and negative cases
for female and male individuals, respectively, between the two Southern
American populations. The figures are also divided into white blood cell-
derived parameters (WBCP) and red blood cell-derived parameters
(RBCP), along with two platelet-derived variables (MPV and platelet
count).

Regarding inter-populational differences for female negative cases, a
remarkable distinction was observed between basophils, eosinophils,
and all RBCP, except for MCH and RDW. The same pattern was evident
for female positive cases; besides that, only MCH exhibited similar dis-
tribution Fig. 3. In contrast, inter-populational distinctions between
positive male patients, basophils, neutrophils, lymphocytes, and all
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Fig. 1. PCA analysis, displaying the distribution of negative and positive cases, divided by male (M) and female (F) individuals, and by population. A) Distribution
for M, F and MF individuals, respectively, in Ecuador. B) Distribution for M, F and MF individuals, respectively, in Brazil, after data treatment; and C) Distribution for
M, F and MF, respectively, individuals in Brazil and Ecuador.

importance of identifying blood cell alterations from conventional CBC
data as a complementary laboratory tool for the classification of the
SARS-CoV-2 infection status in different populations (Alimadadi et al.,
2020; Avila et al., 2020; Brinati et al., 2020; Gong et al., 2020; Imran
et al., 2020; Wu et al., 2020; Yan et al., 2020; Yao et al., 2020). None-
theless, there are no descriptions in the literature of comparative ana-
lyses of CBC findings between COVID-19 positive and negative cases
from certain Latin American countries, such as Ecuador, as well as a
scarcity of comparisons of CBC profiles from these countries concerning
other populations with different genetic background on the same

continent.

In the present study, ML/FS approaches were applied to identify
intra- and inter-populational CBC alterations in datasets from Brazil and
Ecuador, two Latin American countries with marked differences in their
genetic ancestry composition. In this sense, we notice a clear distribu-
tion pattern in the PCA and t-SNE analysis of positive and negative cases
between the two countries. Such cases were distinctly grouped, with
only a mild overlap. Almost all RBCP were strikingly divergent in the
two populations; however, for WBCP, the results were mixed, with few
patterns emerging. Nevertheless, basophils surfaced an important dif-
ferential feature for both males and females in both populations. For

males, neutrophil and lymphocyte counts were distinct between Brazil
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Fig. 2. T-SNE analysis, displaying the distribution of negative and positive cases, divided by male (M) and female (F) individuals, and by population. A) Distribution
for M, F and MF individuals, respectively, in Ecuador. B) Distribution for M, F and MF individuals, respectively, in Brazil, after data treatment; and C) Distribution for
M, F and MF, respectively, individuals in Brazil and Ecuador.

and Ecuador, while eosinophils profiles were distinguished for females. These similar results for the WBCP group validate the computational
Finally, when combining male and female samples, neutrophils, lym- strategy applied in the present study and support our comparison of CBC
phocytes, and monocytes displayed a particular distribution. Previous patterns between the Brazilian population and the Ecuadorian one.
findings support our results. For instance, WBCP alterations, specifically Nonetheless, when comparing affected and unaffected Brazilian in-
of neutrophils and lymphocytes counts, have been reported in numerous dividuals in our analyses, almost all RBCP had divergent patterns, not
studies from different populations (Agbuduwe and Basu, 2020; Terpos exclusively the RBCs count reported in the previous study. Lastly, unlike
et al., 2020; Zhu et al., 2020). Remarkably, a recent work using ML and the study conducted by Banerjee and colleagues (2020) (Banerjee et al.,
Artificial Intelligence approaches to predict SARS-CoV-2 positive pa- 2020), we did not identify a clear, recognizable pattern of decrease in
tients from the full CBC dataset originated from the Albert Einstein platelets in Brazilian individuals with COVID-19.

Hospital, the same dataset from the Brazilian population queried here, Although Brazilian and Ecuadorian populations have a similar three-
also identified WBCP alterations in basophils, lymphocytes, eosinophils, hybrid genetic composition (European, African, and Native American),
and monocytes, as well as in the count of RBCs (Banerjee et al., 2020). the fraction of each ancestry component significantly differs between
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Fig. 6. Feature Selection (RFE-SVM) for each dataset. A) FS results for Brazil (BR-V2); B) FS results for Ecuador (ECU); and C) FS results for Ecuador + Brazil (ECU +

BR-v2). The results consider gender (M,F) and the population (M + F).

the two countries. Briefly, the European and the"Mestizo" ancestry (an
admixture of Spanish and Indigenous American ancestry) are the most
predominant contributions in Brazil and Ecuador, respectively (de
Moura et al., 2015; Santangelo et al., 2017; de Souza et al., 2019;
Zambrano et al., 2019). These distinct genetic ancestries’ profiles may
explain, at least in part, some differences found in the present study
comparing CBC patterns between affected and unaffected individuals. In
this context, our results from the FS approach (RFE-SVM), employed to
identify the most relevant CBC variables that could better distinguish the
SARS-CoV-2 infection status, indicated that only three CBC features
successfully classify Ecuadorian individuals with COVID-19. In com-
parison, more than ten features were required for the same classification
purpose in the Brazilian population. Of note, all these CBC features’
differences derived from RFE-SVM analyses were statistically significant
using the MWU test (Table 3), reinforcing the findings obtained through
FS approach. We hypothesize that the more significant number of CBC
features needed to distinguish positive from negative cases for COVID-
19 in Brazil may be explained by the fact that this country has one of
the most heterogeneous genetic constitutions in the world with a highly
extensive admixture (Pena et al., 2020; Ruiz-Linares et al., 2014; de
Souza et al., 2019). Two additional factors should also be pointed out.
Firstly is the exposure to different predominant VOCs or viral lineages of
SARS-CoV-2 in the pandemic epidemiological week period in which the
CBC data was collected in each country. For example, the dominant

10

transmission lineage in Ecuador throughout 2020 was B.1.1.74 (previ-
ously designated as an Alpha VOC, one of the lineages descended from
B.1.1, which became one of the most dominant lineages during the early
phase of the pandemic in Europe and North America) (Gutierrez et al.,
2021). This lineage differs from those more commonly identified as
circulating in most regions of Brazil in the same year (B.1.1.28 and
B.1.1.33, as well as P.1 and P.2 lineages, previously designated as Alpha
and Gamma VOCs, respectively) (Faria et al., 2021; Franceschi et al.,
2021; Nonaka et al., 2021; Resende et al., 2020). Secondly is the influ-
ence of altitude differences (Ecuadorians are located at a higher altitude
than Brazilians) on each population’s CBC constitutive profiles (baseline
or healthy condition). It has been widely described that the rate of
erythropoiesis is altitude-dependent (Ge et al., 2002; Robach et al.,
2004), as well as the occurrence of human genetic adaptations to higher
altitudes for maintaining an adequate efficiency of oxygen delivery
(Julian and Moore, 2019; Murray et al., 2018), which ultimately can
explain different RBCP patterns between the two populations studied.
The results of the current study must be interpreted in the context of
the following limitations: (i) small sample number in the Ecuador
dataset (Ecu-v1, n = 375); (ii) lack of data regarding the results of other
clinical and laboratory tests in the Ecuadorian sampling, in addition to
the CBC-associated hematological parameters analyzed here, such as
biochemical and immunological tests, pulmonary function and imaging
tests; and (iii) temporal difference in the period of the pandemic in
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which the datasets from the two countries were collected, being those of
the Brazilian population obtained at an earlier time of the pandemic
(November 1st, 2019 to June 30th, 2020) and those of Ecuador (March
3rd, 2021 to August 9th, 2021). On the other hand, a positive aspect of
our study is the importance of the CBC profiles’ comparison between
COVID-19 positive and negative individuals from Latin American
countries, providing additional evidence that the same hematological
parameters considered in a specific population context cannot be used in
the complementary differential diagnosis of SARS-CoV-2 infection in
another population with a distinct genetic ancestry profile. Importantly,
this is the first study to explore CBC patterns among infected and un-
infected individuals from Ecuador.

5. Conclusions

In conclusion, the current study highlights the importance of
applying ML/FS approaches to identify changes in peripheral blood
parameters derived from CBC in positive and negative individuals for
SARS-CoV-2 infection and prioritize more relevant parameters of pre-
diction infection status in different populations. In summary, there was a
distinct RBCP pattern between the two populations in almost all pa-
rameters for both male and female individuals. However, WBCP had no
clear patterns. This result strengthens the need to evaluate and find these
population differences since it directly impacts the understanding of
treatment options, outcomes, and preventive measures.

Additionally, the interpretation of our results was in agreement with
the genetic ancestry background behind the CBC data of Brazil and
Ecuador. Our findings demonstrate that the same CBC parameters
filtered by ML/FS approaches that allow distinguishing positive from
negative cases for COVID-19 in a given population will not necessarily
be able to discriminate infection status in another population. These
approaches should be employed in a population-specific context,
considering the differential aspects of genetic ancestry, evolutionary
adaptations (e.g., high altitudes and oxygenation levels), and/or expo-
sure to different environmental factors (e.g., infection by predominant
SARS-CoV-2 genetic lineages in specific periods of the pandemic), which
make these CBC patterns as complementary laboratory biomarkers for
COVID-19 diagnosis that are unique to each population.
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